
81
5 Portal Features in BVSN Financial

Sample Application
One-To-One Financial enables financial institutions to add features to their Web sites that encourage
customers to use their personal home pages as portals. These portal features allow customers to add
links to their favorite Web sites on their personal home pages, and to have their home page remind
them of important upcoming dates.

The One-To-One Financial link storing capability allows a simple, yet flexible implementation for
saving the URL of external Web sites. Customers can save their favorite Web sites by entering the
URL and a friendly name for the site. These links can be displayed, edited, removed, and sorted
either alphabetically or arbitrarily.

The One-To-One Financial reminders feature provides a simple means for customers to enter
imporant dates that they want to be reminded of and specify how soon before that date they should
be reminded. This feature is an extension of the One-To-One Financial alerts feature.

The financial institution can specify the layout, color, font, and style of the page that holds the links,
including the presence or absence of buttons, number of buttons, and the text on the buttons. The
financial institution can also control the layout and style of the reminders pages and the text that is
displayed to remind the customers.

Portal operations
The BVSN Financial sample application demonstrates one approach to creating a financial
institution site. One-To-One Financial provides support for the following link management
operations for the customer:

Favorite Links Operation Description

View links Customers can choose to have their links displayed on the home page
or only on the Favorite Links page.

Add new links Customers can create new links.

Delete links Customers can delete existing links.

Edit links Customers can edit existing links, either by changing the URL or friendly
name of the links.

Sort links Customers can sort their links either arbitrarily with the Move Up and
Move Down buttons, or alphabetically.
One-To-One Financial Developer’s Guide 730-410-SAP BroadVision, Inc.

Chapter 5 Portal Features in BVSN Financial Sample Application
Favorite links

82
The BVSN Financial sample application also illustrates an implementation of the reminders
features. One-To-One Financial provides support for the following reminders management
operations for the customer:

This chapter discusses the following portal management operations in greater detail.

● “Favorite links” on page 82

● “Reminders” on page 91

Favorite links
The following diagram shows the scripts used for adding and managing favorite links. These pages
are located in the $BV1TO1/finance/bvsnfi/scripts/favoritelinks directory.

This section describes the following:

● “Viewing links” on page 82.

● “Updating links” on page 83.

● “Adding links” on page 85.

● “Editing links” on page 86.

● “Deleting links” on page 88.

● “Sorting links manually” on page 89.

● “Sorting links alphabetically” on page 91.

Viewing links

The customer home page displays links in the upper right area of the page under the heading My
Favorite Links. Customers can go to the Web link management page by clicking either the My
Favorite Links heading or the Favorite Links navigation link in the left frame. In either case, the
BVSN Financial sample application displays the
$BV1TO1/finance/bvsnfi/scripts/favoritelinks/main_display.jsp page. This page
does the following:

Reminders Operation Description

View reminders Customer can view their existing reminders.

Add new reminders Customers can create new reminders.

Edit reminders Customers can edit existing reminders, either by changing the date, the
description, or when the application should starting reminding the
customer of the event.

Delete reminders Customers can delete existing reminders.

main_display.jsp

edit.jsp
BroadVision, Inc. 730-410-SAP One-To-One Financial Developer’s Guide

Chapter 5 Portal Features in BVSN Financial Sample Application
Favorite links

83
main_display. jsp

1. Initializes the page with BVJS_PTFLInit(), which sets the session variables for use in writing a
form and for editing the Web sites.

2. Sets the value of formatString, which includes the BVJS_PTFLColumnURL and
BVJS_PTFLColumnName constants.

The constants used by the favorite links functions are described in “Favorite links constants” on
page 324.

3. Displays the formatString from the previous step. This displays the Web links that the
customer has saved.

Response . write(BVJS_PTFLShow(formatString, ““));

4. Uses the makeScriptURL function to add the session information from this page to the
edit.jsp page. In this way the edit.jsp page has the customer’s session information
should the customer chose to go to that page.

Updating links

The functionality that allows the customers to add, edit, delete, and sort their favorite links is
contained in the edit.jsp page. The functionality provided by this page is described in this
section and “Adding links” on page 85, “Editing links” on page 86, “Deleting links” on page 88,
“Sorting links manually” on page 89, and “Sorting links alphabetically” on page 91. The beginning
of this script applies to all of the following operations. This page does the following:

edit. jsp

1. Initializes the page with BVJS_PTFLInit(), which makes sure that the session variables have
been set for use in displaying the form and for editing the Web sites. BVJS_PTFLInit() does not
take any explicit parameters. It returns zero if successful and non-zero for an error. This
function sets the portal variable to a BVI_Properties stored in the Session object. After
portal is set, it contains:

• linkCounter, which is used to help generate a unique key for new links.

• linksTable, which is a BVI_MultiValueTable that stores the customer’s links.

• nLinks, which is an integer containing the number of links the customer has stored.
One-To-One Financial Developer’s Guide 730-410-SAP BroadVision, Inc.

Chapter 5 Portal Features in BVSN Financial Sample Application
Favorite links

84
• linkError_blankURL, which is a flag indicating that the customer has tried to create a
link (through either addition or modification) without entering a URL. This is used as a
control flag for displaying error information to the customer. This flag is set (set is 1, not set
is 0),by one of BVJS_PTFLProcessForm(), BVJS_PTFLAdd(), or BVJS_PTFLUpdate().

• linkError_updateInvalid, which indicates that the customer has tried to perform an
update without selecting a link to update. This is set by the BVJS_PTFLUpdate() method.

• workingLink, which is a BVI_MultiValueRow corresponding to the link, if any, that the
customer has chosen to modify. You can access the columns of the BVI_MultiValueRow with
its get method and the constants defined in LinkConstants.

2. Caches the value of portal by retrieving the portal value from the Session object.

var portal = Session . portal;

This value is used later in this script.

3. Checks to see if the customer has sent the cancel changes message. If cancel changes has not
been sent, the page calls the BVJS_PTFLProcessForm() method. This method processes the form
and posts to itself, that is, updates the form. This BVJS_PTFLProcessForm() method performs
the updates to the form, whether the update is adding, editing, deleting, or sorting links.

The form is created by the combination of a JavaScript page, the session variables defined in the
BVJS_PTFLInit() method, and the previous version of this HTML page generated by the
BVJS_PTFLEditAll() method.

In the BVSN Financial sample application, the BVJS_PTFLEditAll() function is the interface to
the add, delete, update, sortAlphabetically, and sortManually methods, none of
which needs to be called directly. See “BVJS_PTFLEditAll()” on page 327.

4. Checks to see if the Request object contains a field named BVJS_PTFLFieldUpdateLink. If
it does, the page calls clearWorkingRow, which provides a clear row to enter a new link. (This
method discards any unsaved changes in the current row, but it does not delete a row.) The
BVJS_PTFLFieldUpdateLink updates the database table, BV_PTFLLinks, the name of
which is stored in BVJS_PTFLTableName.

5. Sets the value of workingLink by retrieving the value from the portal object that was set in
Step 2. This assigns the variable workingLink to a property of the Session object to make it
more quickly accessible to this script.

var workingLink = portal . workingLink;

6. Stores BVJS_PTFLColumnID in the HTML field named BVJS_PTFLFieldWorkingID.
Because this is a hidden field, the customers do not see the BVJS_PTFLFieldWorkingID, but
it does hold the name and value pair for use when this page posts to itself, that is, updates.

7. Retrieves the URL of the working link, and stores BVJS_PTFLColumnURL in the HTML field
named BVJS_PTFLFieldWorkingURL. These values are not visible to the customer, but store
value pair information.

8. Checks to see if the linkError_blankURL has been set. If so, the page displays an error
message.

9. Calls the get method of the workingLink object. This gets the value of the column named by
the contents of BVJS_PTFLColumnName.

10. Sets the value of selectOptions. This identifies the links (options) in the customer’s list of
saved links for diaplay.
BroadVision, Inc. 730-410-SAP One-To-One Financial Developer’s Guide

Chapter 5 Portal Features in BVSN Financial Sample Application
Favorite links

85
11. Displays the HTML form that allows customers to add, edit, delete, and sort their links.

Adding links

To add a link, this page performs all of the steps in “Updating links” on page 83, then does the
following:

1. Checks the value of the ID of workingLink. If the customer is adding a link, the
workingLink variable is null. The script displays the Add New Link button so the customer
can add a new link.

<%
if(workingLink . get(BVJS_PTFLColumnID) != "") {
%>
<INPUT TYPE=submit NAME="<%= BVJS_PTFLFieldUpdateLink %>"

VALUE="Save Changes">
<INPUT TYPE=submit NAME="Cancel Changes" VALUE="Cancel">
<%
} else {
%>
<INPUT TYPE=submit NAME="<%= BVJS_PTFLFieldAddLink %>"

VALUE="Add New Link">
<%
}
%>

2. Sets the value of formatString, which later uses the server-side JavaScript to dynamically
generate the client-side JavaScript. This happens when the formatString is passed to the
formatter by the BVJS_PTFLEditAll() method. This is the part of the script that displays the
fields and buttons needed to add a link.

<%
var formatString =

"<SCRIPT>selectOptions = selectOptions + " +
"'<OPTION VALUE=\\'<%= " + BVJS_PTFLColumnID + " %s " +
"encoding:html:std %>\\'> " +
"<%= " + BVJS_PTFLColumnName + " %s encoding:html:std
%>';</SCRIPT>\n";

%>

3. Displays the rest of the HTML form. The selectOptions here is taken from the code in Step 2.
(This section of the script comes after moveUp function.)

<select name="ReorderList" size="10">
<script> document . write(selectOptions); </SCRIPT>
One-To-One Financial Developer’s Guide 730-410-SAP BroadVision, Inc.

Chapter 5 Portal Features in BVSN Financial Sample Application
Favorite links

86
4. The customer enters the new link name and URL.

5. Makes sure that the selected information is passed to the BVJS_PTFLProcessForm() method
correctly. Then displays the page again.

6. When the customer clicks the Add New Link button, the script runs the
BVJS_PTFLProcessForm() method. This updates the page, adding the new link.

Editing links

To edit an existing link, this page performs all of the steps in “Updating links” on page 83, then does
the following:

1. The customer selects a link and clicks the Edit button. The page updates using the
BVJS_PTFLProcessForm() method.

2. Checks the value of the ID of workingLink. If the customer is editing a link, the ID column of
the workingLink row contains a value. The script displays the Save Changes and Cancel
buttons so that it can be updated, or the customer can cancel their changes. (In order for the
workingLink to contain a value, the edit.jsp page must have updated itself at least once.)

<%
if(workingLink . get(BVJS_PTFLColumnID) != "") {
%>
<INPUT TYPE=submit NAME="<%= BVJS_PTFLFieldUpdateLink %>"

VALUE="Save Changes">
<INPUT TYPE=submit NAME="Cancel Changes" VALUE="Cancel">
<%
} else {
. . .
BroadVision, Inc. 730-410-SAP One-To-One Financial Developer’s Guide

Chapter 5 Portal Features in BVSN Financial Sample Application
Favorite links

87
3. Sets the value of formatString, which later uses the server-side JavaScript to dynamically
generate the client-side JavaScript. This happens when the formatString is passed to the
formatter by the BVJS_PTFLEditAll method. This is the part of the script that displays the fields
and buttons need to edit a link.

<%
var formatString =

"<SCRIPT>selectOptions = selectOptions + " +
"'<OPTION VALUE=\\'<%= " + BVJS_PTFLColumnID + " %s " +
"encoding:html:std %>\\'> " +
"<%= " + BVJS_PTFLColumnName + " %s encoding:html:std
%>';</SCRIPT>\n";

%>

4. Makes sure that the selected information is passed to the BVJS_PTFLProcessForm() method
correctly. (This section of the script comes after moveUp function.)

<input type="submit" value=" Edit " onClick=
"this.name=’Edit’+document.LinkForm.ReorderList
[document.LinkForm.ReorderList.selectedIndex].value;">

5. When the user clicks the Save Changes button the page updates again using the
BVJS_PTFLProcessForm() method.
One-To-One Financial Developer’s Guide 730-410-SAP BroadVision, Inc.

Chapter 5 Portal Features in BVSN Financial Sample Application
Favorite links

88
Deleting links

To delete an existing link, this page performs all of the steps in “Updating links” on page 83, then
does the following:

1. Sets the value of formatString using the server-side JavaScript to dynamically generate the
client-side JavaScript. This is the part of the script that identifies the link to be deleted.

<%
var formatString =

"<SCRIPT>selectOptions = selectOptions + " +
"'<OPTION VALUE=\\'<%= " + BVJS_PTFLColumnID + " %s " +
"encoding:html:std %>\\'> " +
"<%= " + BVJS_PTFLColumnName + " %s encoding:html:std

%>';</SCRIPT>\n";
%>

2. Makes sure that the selected information is passed to the BVJS_PTFLProcessForm() method
correctly. (This section of the script comes after moveUp function.)

<input type="submit" value=" Delete "
onClick="this.name=’Delete’+document.LinkForm.ReorderList
[document.LinkForm.ReorderList.selectedIndex].value;">

3. When the user clicks the Delete button the page updates using the BVJS_PTFLProcessForm()
method.
BroadVision, Inc. 730-410-SAP One-To-One Financial Developer’s Guide

Chapter 5 Portal Features in BVSN Financial Sample Application
Favorite links

89
Sorting links manually

For a customer to sort links, there must be at least two links in the list. When the customer selects a
link and clicks either the Up or Down button, this page performs all of the steps in “Updating links”
on page 83, then does the following:

1. Checks the value of workingLink. If workingLink contains any value, the script displays the
Save Changes and Cancel buttons so that it can be updated or the customer can cancel their
changes. In order for the workingLink to contain a value the customer must have selected a
link.

<%
if(workingLink . get(BVJS_PTFLColumnID) != "") {
%>
<INPUT TYPE=submit NAME="<%= BVJS_PTFLFieldUpdateLink %>"

VALUE="Save Changes">
<INPUT TYPE=submit NAME="Cancel Changes" VALUE="Cancel">
<%
} else {
%>

2. Sets the value of formatString using the server-side JavaScript to dynamically generate the
client-side JavaScript. This is the part of the script that identifies the link to be added, edited,
deleted, or sorted (that is, moved up or down, see <sorting links>).

<%
var formatString =

"<SCRIPT>selectOptions = selectOptions + " +
"'<OPTION VALUE=\\'<%= " + BVJS_PTFLColumnID + " %s " +
"encoding:html:std %>\\'> " +
"<%= " + BVJS_PTFLColumnName + " %s encoding:html:std

%>';</SCRIPT>\n";
%>

3. Defines the moveDown() function. This allows the customer to move the links down in the
display list. The moveDown() function:

a. Sets the value of selectedIndex and maxIndex.

b. Checks the value of selectedIndex to see if it is maxIndex. If it is, the row is already at
the bottom of the list and cannot be moved down any further. The function stops.

c. Sets the value of selectedValue and nextValue. These are used to move the rows in the
list of links.

d. Initializes the value of i to zero. Hidden fields are used to identify the HTML fields as id1,
id2, and so on. The links are re-ordered using these ids. The i represents the current HTML
field; it could be any HTML field, a row in the list of links or a button. The function iterates
One-To-One Financial Developer’s Guide 730-410-SAP BroadVision, Inc.

Chapter 5 Portal Features in BVSN Financial Sample Application
Favorite links

90
over all of the HTML fields to find the name of the field that has been selected. This function
needs to find the selected link and the link below it in order to switch them. (This code is
necessary to make the script browser independent.)

var i;
for(i = 0; i < document . LinkForm . elements . length; ++i)

if(document . LinkForm . elements[i] . name == selectedValue)
++(document . LinkForm . elements[i] . value);

else if(document . LinkForm .elements[i] . name == nextValue)
--(document . LinkForm . elements[i] . value);

4. Defines the moveUp() function. This allows the customer to move the links up in the display
list. This function is almost identical to the moveDown() function described above. The
moveDown() function:

a. Sets the value of selectedIndex and maxIndex.

b. Checks the value of selectedIndex to see if it is maxIndex. If it is, the row is already at
the up of the list and cannot be moved down any further. The function stops.

c. Sets the value of selectedValue and nextValue. These are used to move the rows in the
list of links.

d. Initializes the value of i to zero. Hidden fields are used to identify the HTML fields as id1,
id2, and so on. The links are re-ordered using these ids. The i represents the current HTML
field; it could be any HTML field, a row in the list of links or a button. The function iterates
over all of the HTML fields to find the name of the field that has been selected. This function
needs to find the selected link and the link below it in order to switch them. (This code is
necessary to make the script browser independent.)

var i;
for(i = 0; i < document . LinkForm . elements . length; ++i)

if(document . LinkForm . elements[i] . name == selectedValue)
--(document . LinkForm . elements[i] . value);

else if(document . LinkForm .elements[i] . name == previousValue)
++(document . LinkForm . elements[i] . value);

5. Sets the value of formatString. The server-side JavaScript dynamically generates the
client-side JavaScript in addition to reordering the form fields.

6. The customer selects a link to move and clicks either the Up or Down button.

7. Executes the moveUp() and moveDown() methods, if at all, with the following script:

<input type=”submit” name”<%= BVJS_PTFLFieldSortManual %>”
value=” MoveUp “ onClick=”moveUp()”>

<input type=”submit” name”<%= BVJS_PTFLFieldSortManual %>”
value=” MoveDown “ onClick=”moveDown()”>

8. When the user clicks the Up or Down button the page updates using the
BVJS_PTFLProcessForm method.
BroadVision, Inc. 730-410-SAP One-To-One Financial Developer’s Guide

Chapter 5 Portal Features in BVSN Financial Sample Application
Reminders

91
Sorting links alphabetically

In order for the customer to sort links, there must already be at least two links in the list. The script
performs Step 1 and Step 2 of “Sorting links manually” on page 89. To sort links alphabetically, this
page does the following:

1. Makes sure that the selected information is passed to the BVJS_PTFLProcessForm() method
correctly. (This section of the script comes after moveUp function.)

<input type="submit" name="<%= BVJS_PTFLFieldSortAlpha %>"
value="Sort">

2. The customer clicks the Sort button. The form updates using the BVJS_PTFLProcessForm()
method.

Reminders
One-To-One Financial includes the capability for customers to maintain a list of date reminders on
their personal home page of their financial institution. In this way, customers are encouraged to use
their financial site home page as a portal to other sites.

The One-To-One Financial reminder storing capability allows a simple, yet flexible implementation
for sending a reminder (an alert) to the customer about an important date. Customers can enter any
date that is important to them: anniversary, appointment with the tax consultant, doctor’s
appointment, birthday, and so on. The application allows customers to determine when they should
be reminded of scheduled dates and how frequently.

The financial institution can specify the layout, color, font and style of the page that holds the
reminders, including the presence or absence of buttons, number of buttons, and the text on the
buttons.

The following diagram shows the scripts used for adding and managing favorite links. These pages
are located in the $BV1TO1/finance/bvsnfi/scripts/favoritelinks directory.

This section describes the following:

● “Viewing reminders” on page 92.

● “Managing reminders” on page 92.

● “Adding reminders” on page 95.

● “Editing reminders” on page 96.

● “Deleting reminders” on page 98.

● “Reminders configuration parameters” on page 98

main_display.jsp

edit.jsp
One-To-One Financial Developer’s Guide 730-410-SAP BroadVision, Inc.

Chapter 5 Portal Features in BVSN Financial Sample Application
Reminders

92
Viewing reminders

The customer home page displays reminders in the upper left area of the page under the heading
Reminders. Customers can go to the reminders management page by clicking either the Reminders
heading or the Reminders navigation link in the left frame. In either case, the BVSN Financial
sample application displays the
$BV1TO1/finance/bvsnfi/scripts/reminders/main_display.jsp page. This page does
the following:

main_display. jsp

1. Sets the value of remindersTable to the value of BVJS_PTRMGetPersonalInbox(). The
BVJS_PTRMGetPersonalInbox() function returns a BVI_Table containing the portion of the
customer’s alert inbox generated by personal reminders. If the customer’s reminders have not
triggered an alert, no reminders are displayed on the Reminders page or on the home page. If
there are any reminders in the table (rows > 0) then the script uses the formatter to display the
reminders.

2. This page also contains a link to the edit.jsp page.

Managing reminders

As with favorite links, the functionality that allows the customers to add, edit, delete, and modify
their reminders is contained in the edit.jsp page. The functionality provided by this page is
described in the following sections. The beginning of this script applies to all of the following
operations. This page does the following:

edit. jsp

1. Initializes the page with BVJS_PTRMInit(), which makes sure that the session variables have
been set for use in writing the form and for editing the reminders.

2. Sets the value of earlier by retrieving the value of the BVJS_PTRMFieldDaysBefore
constant from the Request object. By getting this value the script can determine if the page has
been updated. The BVJS_PTRMFieldDaysBefore constant holds the value contained in the
Start Reminding Me field. This field is passed whenever this page updates, that is, whenever
the customer clicks on a button.

var earlier = Request . value(BVJS_PTRMFieldDaysBefore);
BroadVision, Inc. 730-410-SAP One-To-One Financial Developer’s Guide

Chapter 5 Portal Features in BVSN Financial Sample Application
Reminders

93
The constants used by the reminders functions are described in “Reminders constants” on
page 329.

3. Sets the value of cancel by retrieving the value "CancelUpdate" from the Request object.

var cancel = Request . value("Cancel Update");

Initially, this value is null. The value of cancel changes only when the customer clicks the
Cancel Update button.

4. Sets the value of dateInputError to 0.

5. Runs a block of code to extract information from the user input. Because the Edit and Delete
buttons are images in the BVSN Financial sample application, they can be assigned a name, but
not a value. To work around this restriction, the BVSN Financial sample application appends
identification information to the button name. This code segment extracts the value of the
Delete and Edit buttons to determine which reminder the customer has selected.

if((earlier != null) && (cancel == null)) {
var deleteKeys = Request . subkeys(BVJS_PTRMFieldDelete, true);
if(deleteKeys . length() > 0) {

var deleteInfo = deleteKeys . get(0);
deleteInfo = deleteInfo . slice(BVJS_PTRMFieldDelete . length,

deleteInfo . length - 2);
Request . add_attribute(BVJS_PTRMFieldDelete, deleteInfo);

}

var editKeys = Request . subkeys(BVJS_PTRMFieldEdit, true);
if(editKeys . length() > 0) {

var editInfo = editKeys . get(0);
editInfo = editInfo . slice(BVJS_PTRMFieldEdit . length,

editInfo . length - 2);
 Request . add_attribute(BVJS_PTRMFieldEdit, editInfo);

}

BVJS_PTRMProcessForm();

dateInputError |=
Session . portal . personalReminderError_dateInvalid;

}

6. Sets the value of several attributes to the empty string.

var workingReminderName = "";
var workingReminderMonth = "";
var workingReminderday = "";
var workingReminderID = "";

7. Sets the value of the today attribute to a new instance of BVI_DateTime. (The default value is
now, the current date and time.)

8. Sets the value of portal to the value of Session . portal. This is caching for improving
performance.
One-To-One Financial Developer’s Guide 730-410-SAP BroadVision, Inc.

Chapter 5 Portal Features in BVSN Financial Sample Application
Reminders

94
9. Sets the value of workingReminderDaysBefore to 14 (the default value for the sample
application). This is the variable that holds the value for when to start sending reminders. This
variable is also held by the BVJS_PTRMFieldDaysBefore constant.

10. Runs an if/else block that either cancels the object or sets the values to those in the portal
object. If cancel is not null, that is, the customer has clicked the cancel button, then the script sets
the working reminder values to null. If cancel is null, that is, the customer has not clicked the
Cancel button, the script proceeds to the next part of the block.

if(cancel != null) {
BVJS_PTRMClearWorkingReminder();

11. If the value of earlier is not null, the script sets the working reminder values to the values in
the portal object. If earlier is null, the customer has not input any values yet. The script set the
value of workingReminderName back to the empty string.

} else if(earlier != null) {
workingReminderName = portal . workingReminderName;
if(workingReminderName != null) {

workingReminderMonth = portal . workingReminderEventDate .
month;

workingReminderDay = portal . workingReminderEventDate . day;
workingReminderID = portal . workingReminderID;
workingReminderDaysBefore = portal .

workingReminderDaysBefore;

} else
workingReminderName = "";

}

12. Displays the HTML FORM.

13. Checks for errors.
BroadVision, Inc. 730-410-SAP One-To-One Financial Developer’s Guide

Chapter 5 Portal Features in BVSN Financial Sample Application
Reminders

95
Adding reminders

After following the steps in “Managing reminders” on page 92, this page does the following:

1. Displays the drop-down month selector for the customer to chose a month. This step is the same
for adding or editing a reminder.

<TD><SELECT NAME="<%= BVJS_PTRMFieldMonth %>">
<OPTION <%= workingReminderMonth == 1 ? "SELECTED" : "" %>

VALUE=1> 1
<OPTION <%= workingReminderMonth == 2 ? "SELECTED" : "" %>

VALUE=2> 2
<OPTION <%= workingReminderMonth == 3 ? "SELECTED" : "" %>

VALUE=3> 3
<OPTION <%= workingReminderMonth == 4 ? "SELECTED" : "" %>

VALUE=4> 4
<OPTION <%= workingReminderMonth == 5 ? "SELECTED" : "" %>

VALUE=5> 5
<OPTION <%= workingReminderMonth == 6 ? "SELECTED" : "" %>

VALUE=6> 6
<OPTION <%= workingReminderMonth == 7 ? "SELECTED" : "" %>

VALUE=7> 7
<OPTION <%= workingReminderMonth == 8 ? "SELECTED" : "" %>

VALUE=8> 8
<OPTION <%= workingReminderMonth == 9 ? "SELECTED" : "" %>

VALUE=9> 9
<OPTION <%= workingReminderMonth == 10 ? "SELECTED" : "" %>

VALUE=10> 10
<OPTION <%= workingReminderMonth == 11 ? "SELECTED" : "" %>

VALUE=11> 11
<OPTION <%= workingReminderMonth == 12 ? "SELECTED" : "" %>

VALUE=12> 12
</SELECT>
</TD>

2. Dynamically generates the list of available months. This step also is the same for adding or
editing a reminder.

<TD><SELECT NAME="<%= BVJS_PTRMFieldDay %>">
<%
for(var i = 1; i <= 31; ++i)

if(i == workingReminderDay)
Response . write(" <OPTION SELECTED VALUE=" + i + "> " +

i + "\n");
else

Response . write(" <OPTION VALUE=" + i + "> " + i + "\n");
%>
</SELECT>
</TD>
One-To-One Financial Developer’s Guide 730-410-SAP BroadVision, Inc.

Chapter 5 Portal Features in BVSN Financial Sample Application
Reminders

96
3. Looks for the workingReminderDaysBefore value. That is, the script checks the drop-down
list to see what value the customer has chosen for the Start Reminding Me field.

<TD><SELECT NAME="<%= BVJS_PTRMFieldDaysBefore %>">
<OPTION VALUE=-1>Now
<OPTION <%= workingReminderDaysBefore == 30 ? "SELECTED" : "" %>

VALUE=30>Onemonth before
<OPTION <%= workingReminderDaysBefore == 14 ? "SELECTED" : "" %>

VALUE=14>Twoweeks before
<OPTION <%= workingReminderDaysBefore == 7 ? "SELECTED" : "" %>

VALUE=7>One week before
<OPTION <%= workingReminderDaysBefore == 1 ? "SELECTED" : "" %>

VALUE=1>One day before
<OPTION <%= workingReminderDaysBefore == 0 ? "SELECTED" : "" %>

VALUE=0>Day of the event
</SELECT>

</TD>

4. Runs a code block to display the Add button. This same block also displays the Save Changes
and Cancel buttons as shown in the procedures below.

<%
if((portal . workingReminderOriginalName == "") ||

(portal . workingReminderOriginalName == null)) {
%>

<INPUT TYPE=submit NAME="<%= BVJS_PTRMFieldAdd %>"
VALUE="Add Reminder"> <input type="submit"

value="Cancel">

. . .

5. When the customer clicks the Add Reminder button, the script updates the HTML form by
posting to itself with the BVJS_PTFLProcessForm() method. (BVJS_PTFLProcessForm() runs the
BVJS_PTRMAddPersonal() method.)

6. If the customer clicks the Cancel button instead, the script updates by posting to itself with the
BVJS_PTRMProcessForm() method, but in this case it clears the fields. See Step 10 of the
Managing reminders procedure.

Editing reminders

To edit an existing reminder, this page executes all of the steps in “Updating links” on page 83 and
“Adding links” on page 85 through Step 3, (the looking for the workingReminderDaysBefore
value step) then does the following:

1. Displays the Edit button. This code appears near the end of the script in the format string. The
excerpt below is only that part concerned with the Edit button.

<input type='image' src='/bvsnfi/images/icons/edit.gif'
width=22 height=22 border=0
alt='Edit' name='" + BVJS_PTRMFieldEdit + "<%= ALERT_ID %>:
<%= ALERT_NAME %s %>'></td>
BroadVision, Inc. 730-410-SAP One-To-One Financial Developer’s Guide

Chapter 5 Portal Features in BVSN Financial Sample Application
Reminders

97
This is the button name and value that are extracted in Step 5 of the Managing reminders
procedure.

2. Runs else section of this code block to display the Save Changes button. This same block also
displays the Add and Cancel buttons as shown in the other procedures.

if((portal . workingReminderOriginalName == "") ||
(portal . workingReminderOriginalName == null)) {

. . .
} else {
%>

<INPUT TYPE=hidden NAME="<%= BVJS_PTRMFieldWorkingID %>"
VALUE="<%= workingReminderID %>">

<INPUT TYPE=submit NAME="<%= BVJS_PTRMFieldUpdate %>"
VALUE="Save Changes"> <input type="submit"
name="Cancel Update" value="Cancel">

<%
}
%>

3. When the customer clicks the Edit button the script updates itself displaying the reminder to be
edited in the HTML fields and changing the Add Reminder button to Save Changes. This is the
result of the JavaScript in Step 2 above.

4. When the customer clicks the Save Changes button, the script updates by posting to itself with
the BVJS_PTFLProcessForm() method. (BVJS_PTFLProcessForm() runs the
BVJS_PTRMUpdatePersonal() method.)

5. If the customer clicks the Cancel button instead, the script updates by posting to itself with the
BVJS_PTRMProcessForm() method, but in this case it clears the fields. See Step 10 of the
Managing reminders procedure.
One-To-One Financial Developer’s Guide 730-410-SAP BroadVision, Inc.

Chapter 5 Portal Features in BVSN Financial Sample Application
Reminders

98
Deleting reminders

To edit an existing reminder, this page executes all of the steps in the Managing reminders and
Adding reminders procedures through Step 3, (looking for the workingReminderDaysBefore
value) then does the following:

1. Displays the Delete button. This code appears near the end of the script in the format string. The
excerpt below is only that part concerned with the Delete button.

<input type='image' src='/bvsnfi/images/icons/delete.gif'
width=22 height=22 border=0

alt='Delete' name='" + BVJS_PTRMFieldDelete +
"<%= ALERT_ID %>:<%= ALERT_NAME %s %>'>

This is the button name and value that are extracted in Step 5 of the Managing reminders
procedure.

2. When the customer clicks the Delete button the script updates itself deleting the selected
reminder. (BVJS_PTFLProcessForm() runs the BVJS_PTRMDeletePersonal() method.

Reminders configuration parameters

Four bv1to1.conf parameters determine how reminders are managed at a site. These parameters
determine the pace at which the One-To-One Notifications system processes reminders and how
often reminder specifications and reminder messages get cleared from the One-To-One alerts tables
and customer inboxes.

Configuration parameter Description

ReminderRowsToRead Number of reminder rows to be processed in a single pass by
the One-To-One Notifications system. Once this number of rows
is processed, the system waits the value of
ReminderSleepTime (see next parameter) before it processes
the next set of rows. The default is 500 rows.

ReminderSleepTime Amount of time in seconds to wait between processing passes.
The default is 1 second.

ReminderSpecGracePeriod Determines the day a reminder specification is marked for
deletion. The day the reminder is actually deleted depends on
how often the deleter job is scheduled to run. For example, if the
deleter job is scheduled to run once a week, there could be as
much as a six-day delay between the day a reminder
specification is marked for deletion and the day it is actually
deleted. The default is 15 days.

ReminderMessageGracePeriod Number of days after creation that reminder messages are
marked for deletiondeleted. The day the message is actually
deleted depends on how often the deleter job is scheduled to
run. For example, if the deleter job is scheduled to run once a
week (value "7" , there could be as much as a six-day delay
between the day a specification is marked for deletion and the
day it is actually deleted. The default is 5 days
BroadVision, Inc. 730-410-SAP One-To-One Financial Developer’s Guide

Chapter 5 Portal Features in BVSN Financial Sample Application
Reminders

99
The following code shows how the reminders configuration parameters are set up in the sample
configuration file $BV1TO1/finance/setup/bv1to1.conf.finance.us.

ReminderRowsToRead="100"
ReminderSleepTime="1"
ReminderSpecGracePeriod="15"
ReminderMessageGracePeriod="5"

For more information about deleting reminder specifications and messages, see
“bvptrm_personal_spec_deleter” on page 104 and “bvptrm_personal_inbox_deleter” on page 105.
One-To-One Financial Developer’s Guide 730-410-SAP BroadVision, Inc.

Chapter 5 Portal Features in BVSN Financial Sample Application
Reminders

100
BroadVision, Inc. 730-410-SAP One-To-One Financial Developer’s Guide

	Portal Features in BVSN Financial Sample Application
	Portal operations
	Favorite links
	Viewing links
	Updating links
	Adding links
	Editing links
	Deleting links
	Sorting links manually
	Sorting links alphabetically

	Reminders
	Viewing reminders
	Managing reminders
	Adding reminders
	Editing reminders
	Deleting reminders
	Reminders configuration parameters

